Massively Parallel Fine-Grained MPFG) Computing Task

Mark Govett

Major Elements

NIM Performance & Portability

"Parallelization and Performance of the NIM Weather Model for CPU, GPU and MIC Processors"

Govett, Rosinski, Middlecoff, Henderson, Lee, MacDonald, Madden, Schramm, and Duarte

- Submitted to BAMS for review
- MPFG Procurement
 - Initial delivery in May / June
- GFS parallelization
- NGGPS work

Survey of Work on MIC, GPU

- Models: COSMO, ICON, CAM-SE, FV3, NICAM, GEOS-5, Gungho, FIM, NIM
- MIC
 - Trivial to port codes to the MIC
 - Performance results slower than CPU
- GPU
 - Challenging to port codes
 - ~2X faster than dual socket CPU

Performance Comparisons

- Results in presentations & literature inconsistent
 - Core, socket, node
 - Different code used
 - Optimized for 1 architecture
 - Different generation chips
- NIM comparisons
 - Same source code
 - Optimized code for all architectures
 - Use of standard high-volume parts
 - Device, node & multi-node
 - Cost benefit analysis

MIC

NIM Performance: Single Device

GPU, MIC versus dual socket CPU

Strong Scaling Performance

- CPU, GPU, MIC+CPU
- Decreasing efficiency when less work to do

NIM Performance

- Useful for comparing technologies
- Led to strong collaborations
 - Improved compilers, hardware, libraries
- 11% of peak perf on CPU (SandyBridge)

- Vendors are telling us the NIM:
 - "has the best thread scaling on the MIC of any weather or climate application" (Intel)
 - "is the only weather or climate model where we can make comparisons between CPU, GPU and MIC architectures" (NVIDIA, Intel)
 - "is the best weather model we've seen on the GPU" (NVIDIA)

NIM Dynamical Core

- Designed for fine-grain computing (2008)
 - Uniform Icosahedral grid
 - Minimize branching, maximize parallelism
- Single source code (~5K lines of Fortran)
- Performance portable
 - Directives for parallelization
 - CPU, MIC OpenMP
 - GPU OpenACC, F2C-ACC
 - SMS MPI-based parallelization
- Run on 130K CPU cores (Edison), 10K GPUs
 (Titan), 600 MIC (Stampede)

CPU – GPU Cost-Benefit

- NIM Dynamics only
- Different CPUs and GPU configurations
 - 40 Haswell CPUs, 20 K80 GPUs
 - incorporate off-node MPI communications
- All runs executed in the same time
 - Meets a 1% operational time constraint for a 3KM resolution model
 - 20K columns / GPU used which equates to 95% GPU efficiency

CPU-GPU Cost-Benefit

- Limitations
 - Use of list price (K80: \$5000, Haswell \$6500) is naïve
 - Based on NIM dynamics only
 - Adding physics would lower GPU cost-benefit
 - Did not consider cost of system inter-connect, energy use

Next Generation Chips

- New hardware, better compilers in 2016 should improve programmability and performance
 - 3 5X faster memory for GPU & MIC
 - MIC Knights Landing: Hostless processor
 - GPU, NVIDIA Pascal: Unified memory
 - Improvements to OpenACC compilers
 - Performance & capabilities

MIC: KNL

MPFG Parallelization of GFS Physics

- Initial work focused on porting to MIC
- Trivial to port using OpenMP directives
 - Tailored to FIM with icosahedral grid
 - Column-based thread parallelism
 - Eg. micro-physics, radiation routines
- Performance: Rosinski 2015, NCAR Multi-core Workshop
 - MIC+CPU is ~20% faster than the CPU
 - MIC only is 40% slower than CPU (SNB)
 - Optimizations targeting MIC, gave benefit on CPU
- Future work
 - Port to GPU
 - Further MIC optimizations
 - Push I loop into column routines if not there already

NGGPS Work

- FV3 & MPAS optimizations targeting CPU performance
 - 2X performance improvement for MPAS
 - ~10% improvement for FV3
- Current focus on MIC, GPU
 - FV3 initial results
 - MIC is 50% slower than CPU (SNB)
 - NVIDIA tests show GPU is significantly slower than CPU
 - No baseline results for MPAS yet
- Develop standalone tests to determine what changes are needed to improve performance
 - NIM results are considered a high-water mark
 - ~2X faster on GPU, 1.3X faster on MIC

Questions?

Mark Govett

High Performance Computing Section

NOAA Earth System Research Laboratory

mark.w.govett@noaa.gov

